
Criterion Documentation
Release 1.1.0

Franklin "Snaipe" Mathieu

November 25, 2015

Contents

1 Introduction 3
1.1 Philosophy . 3
1.2 Features . 3

2 Setup 5
2.1 Prerequisites . 5
2.2 Installation . 5
2.3 Usage . 5

3 Getting started 7
3.1 Adding tests . 7
3.2 Asserting things . 7
3.3 Fixtures . 8
3.4 Testing signals . 8

4 Report Hooks 11
4.1 Testing Phases . 11
4.2 Hook Parameters . 11

5 Environment and CLI 13
5.1 Command line arguments . 13
5.2 Shell Wildcard Pattern . 13
5.3 Environment Variables . 14

6 F.A.Q 15

i

ii

Criterion Documentation, Release 1.1.0

Contents 1

Criterion Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Introduction

Criterion is a dead-simple, non-intrusive testing framework for the C programming language.

1.1 Philosophy

Most test frameworks for C require a lot of boilerplate code to set up tests and test suites – you need to
create a main, then register new test suites, then register the tests within these suits, and finally call the
right functions.

This gives the user great control, at the unfortunate cost of simplicity.

Criterion follows the KISS principle, while keeping the control the user would have with other frame-
works.

1.2 Features

• Tests are automatically registered when declared.

• A default entry point is provided, no need to declare a main unless you want to do special handling.

• Test are isolated in their own process, crashes and signals can be reported and tested.

• Progress and statistics can be followed in real time with report hooks.

• TAP output format can be enabled with an option.

• Runs on Linux, FreeBSD, Mac OS X, and Windows (compiles only with Cygwin for the moment).

• xUnit framework structure

3

Criterion Documentation, Release 1.1.0

4 Chapter 1. Introduction

CHAPTER 2

Setup

2.1 Prerequisites

Currently, this library only works under *nix systems.

To compile the static library and its dependencies, GCC 4.9+ is needed.

To use the static library, any GNU-C compatible compiler will suffice (GCC, Clang/LLVM, ICC, MinGW-
GCC, ...).

2.2 Installation

$ git clone https://github.com/Snaipe/Criterion.git
$ cd Criterion
$./autogen.sh && ./configure && make && sudo make install

2.3 Usage

Given a test file named test.c, compile it with -lcriterion:

$ gcc -o test test.c -lcriterion

5

Criterion Documentation, Release 1.1.0

6 Chapter 2. Setup

CHAPTER 3

Getting started

3.1 Adding tests

Adding tests is done using the Test macro:

#include <criterion/criterion.h>

Test(suite_name, test_name) {
// test contents

}

suite_name and test_name are the identifiers of the test suite and the test, respectively. These
identifiers must follow the language identifier format.

Tests are automatically sorted by suite, then by name using the alphabetical order.

3.2 Asserting things

Assertions come in two kinds:

• assert* are assertions that are fatal to the current test if failed; in other words, if the condition
evaluates to false, the test is marked as a failure and the execution of the function is aborted.

• expect* are, in the other hand, assertions that are not fatal to the test. Execution will continue
even if the condition evaluates to false, but the test will be marked as a failure.

assert() and expect() are the most simple kinds of assertions criterion has to offer. They both take
a mandatory condition as a first parameter, and an optional failure message:

#include <string.h>
#include <criterion/criterion.h>

Test(sample, test) {
expect(strlen("Test") == 4, "Expected \"Test\" to have a length of 4.");
expect(strlen("Hello") == 4, "This will always fail, why did I add this?");
assert(strlen("") == 0);

}

On top of those, more assertions are available for common operations:

• {assert,expect}_not(Actual, Expected, [Message])

• {assert,expect}_eq(Actual, Expected, [Message])

7

Criterion Documentation, Release 1.1.0

• {assert,expect}_neq(Actual, Unexpected, [Message])

• {assert,expect}_lt(Actual, Expected, [Message])

• {assert,expect}_leq(Actual, Expected, [Message])

• {assert,expect}_gt(Actual, Expected, [Message])

• {assert,expect}_geq(Actual, Expected, [Message])

• {assert,expect}_float_eq(Actual, Expected, Epsilon, [Message])

• {assert,expect}_float_neq(Actual, Unexpected, Epsilon, [Message])

• {assert,expect}_strings_eq(Actual, Expected, [Message])

• {assert,expect}_strings_neq(Actual, Unexpected, [Message])

• {assert,expect}_strings_lt(Actual, Expected, [Message])

• {assert,expect}_strings_leq(Actual, Expected, [Message])

• {assert,expect}_strings_gt(Actual, Expected, [Message])

• {assert,expect}_strings_geq(Actual, Expected, [Message])

• {assert,expect}_arrays_eq(Actual, Expected, Size, [Message])

• {assert,expect}_arrays_neq(Actual, Unexpected, Size, [Message])

3.3 Fixtures

Tests that need some setup and teardown can register functions that will run before and after the test
function:

#include <stdio.h>
#include <criterion/criterion.h>

void setup(void) {
puts("Runs before the test");

}

void teardown(void) {
puts("Runs after the test");

}

Test(suite_name, test_name, .init = setup, .fini = teardown) {
// test contents

}

3.4 Testing signals

If a test receives a signal, it will by default be marked as a failure. You can, however, expect a test to only
pass if a special kind of signal is received:

#include <stddef.h>
#include <signal.h>
#include <criterion/criterion.h>

8 Chapter 3. Getting started

Criterion Documentation, Release 1.1.0

// This test will fail
Test(sample, failing) {

int *ptr = NULL;

*ptr = 42;
}

// This test will pass
Test(sample, passing, .signal = SIGSEGV) {

int *ptr = NULL;

*ptr = 42;
}

3.4. Testing signals 9

Criterion Documentation, Release 1.1.0

10 Chapter 3. Getting started

CHAPTER 4

Report Hooks

Report hooks are functions that are called at key moments during the testing process. These are useful to
report statistics gathered during the execution.

A report hook can be declared using the ReportHook macro:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(Phase)() {
}

The macro takes a Phase parameter that indicates the phase at which the function shall be run. Valid
phases are described below.

4.1 Testing Phases

The flow of the test process goes as follows:

1. PRE_ALL: occurs before running the tests.

2. PRE_SUITE: occurs before a suite is initialized.

3. PRE_INIT: occurs before a test is initialized.

4. PRE_TEST: occurs after the test initialization, but before the test is run.

5. ASSERT: occurs when an assertion is hit

6. TEST_CRASH: occurs when a test crashes unexpectedly.

7. POST_TEST: occurs after a test ends, but before the test finalization.

8. POST_FINI: occurs after a test finalization.

9. POST_SUITE: occurs before a suite is finalized.

10. POST_ALL: occurs after all the tests are done.

4.2 Hook Parameters

A report hook may take zero or one parameter. If a parameter is given, it is undefined behaviour if it is
not a pointer type and not of the proper pointed type for that phase.

11

Criterion Documentation, Release 1.1.0

Valid types for each phases are:

• struct criterion_test_set * for PRE_ALL.

• struct criterion_suite_set * for PRE_SUITE.

• struct criterion_test * for PRE_INIT and PRE_TEST.

• struct criterion_assert_stats * for ASSERT.

• struct criterion_test_stats * for POST_TEST, POST_FINI, and TEST_CRASH.

• struct criterion_suite_stats * for POST_SUITE.

• struct criterion_global_stats * for POST_ALL.

12 Chapter 4. Report Hooks

CHAPTER 5

Environment and CLI

Tests built with Criterion expose by default various command line switchs and environment variables to
alter their runtime behaviour.

5.1 Command line arguments

• -h or --help: Show a help message with the available switches.

• -v or --version: Prints the version of criterion that has been linked against.

• -l or --list: Print all the tests in a list.

• -f or --fail-fast: Exit after the first test failure.

• --ascii: Don’t use fancy unicode symbols or colors in the output.

• --pattern [PATTERN]: Run tests whose string identifier matches the given shell wildcard pat-
tern (see dedicated section below).

• --no-early-exit: The test workers shall not prematurely exit when done and will properly
return from the main, cleaning up their process space. This is useful when tracking memory leaks
with valgrind --tool=memcheck.

• --always-succeed: The process shall exit with a status of 0.

• --tap: Enables the TAP (Test Anything Protocol) output format.

• --verbose[=level]: Makes the output verbose. When provided with an integer, sets the ver-
bosity level to that integer.

5.2 Shell Wildcard Pattern

Patterns in criterion are matched against a test’s string identifier with fnmatch.

Special characters used in shell-style wildcard patterns are:

Pattern Meaning
* matches everything
? matches any character
[seq] matches any character in seq
[!seq] matches any character not in seq

13

Criterion Documentation, Release 1.1.0

A test string identifier is of the form suite-name/test-name, so a pattern of simple/* matches
every tests in the simple suite, */passing matches all tests named passing regardless of the suite,
and * matches every possible test.

5.3 Environment Variables

Environment variables are alternatives to command line switches when set to 1.

• CRITERION_ALWAYS_SUCCEED: Same as --always-succeed.

• CRITERION_NO_EARLY_EXIT: Same as --no-early-exit.

• CRITERION_ENABLE_TAP: Same as --tap.

• CRITERION_FAIL_FAST: Same as --fail-fast.

• CRITERION_USE_ASCII: Same as --ascii.

• CRITERION_VERBOSITY_LEVEL: Same as --verbose. Sets the verbosity level to its value.

• CRITERION_TEST_PATTERN: Same as --pattern. Sets the test pattern to its value.

14 Chapter 5. Environment and CLI

CHAPTER 6

F.A.Q

Q. When running the test suite in Windows’ cmd.exe, the test executable prints weird characters,
how do I fix that?

A. Windows’ cmd.exe is not an unicode ANSI-compatible terminal emulator. There are plenty of ways
to fix that behaviour:

• Pass --ascii to the test suite when executing.

• Define the CRITERION_USE_ASCII environment variable to 1.

• Get a better terminal emulator, such as the one shipped with Git or Cygwin.

Q. I’m having an issue with the library, what can I do ?

A. Open a new issue on the github issue tracker, and describe the problem you are experiencing.

15

https://github.com/Snaipe/Criterion/issues

	Introduction
	Philosophy
	Features

	Setup
	Prerequisites
	Installation
	Usage

	Getting started
	Adding tests
	Asserting things
	Fixtures
	Testing signals

	Report Hooks
	Testing Phases
	Hook Parameters

	Environment and CLI
	Command line arguments
	Shell Wildcard Pattern
	Environment Variables

	F.A.Q

