

    
      Navigation

      
        	
          index

        	
          next |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Criterion




	Introduction
	Philosophy

	Features





	Setup
	Prerequisites

	Installation

	Usage





	Getting started
	Adding tests

	Asserting things

	Fixtures

	Testing signals





	Report Hooks
	Testing Phases

	Hook Parameters





	Environment and CLI
	Environment Variables
















          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Introduction

Criterion is a dead-simple, non-intrusive testing framework for the C
programming language.


Philosophy

Most test frameworks for C require a lot of boilerplate code to
set up tests and test suites – you need to create a main,
then register new test suites, then register the tests within
these suits, and finally call the right functions.

This gives the user great control, at the unfortunate cost of simplicity.

Criterion follows the KISS principle, while keeping the control
the user would have with other frameworks.




Features


	Tests are automatically registered when declared.

	A default entry point is provided, no need to declare a main
unless you want to do special handling.

	Test are isolated in their own process, crashes and signals can be
reported and tested.

	Progress and statistics can be followed in real time with report hooks.









          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Setup


Prerequisites

Currently, this library only works under *nix systems.

To compile the static library and its dependencies, GCC 4.9+ is needed.

To use the static library, GCC or Clang are needed.




Installation

$ git clone https://github.com/Snaipe/Criterion.git
$ cd Criterion
$ ./autogen.sh && ./configure && make && sudo make install








Usage

Given a test file named test.c, compile it with -lcriterion:

$ gcc -o test test.c -lcriterion











          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Getting started


Adding tests

Adding tests is done using the Test macro:

#include <criterion/criterion.h>

Test(suite_name, test_name) {
    // test contents
}





suite_name and test_name are the identifiers of the test suite and
the test, respectively. These identifiers must follow the language
identifier format.

Tests are automatically sorted by suite, then by name using the alphabetical
order.




Asserting things

Assertions come in two kinds:


	assert* are assertions that are fatal to the current test if failed;
in other words, if the condition evaluates to false, the test is
marked as a failure and the execution of the function is aborted.

	expect* are, in the other hand, assertions that are not fatal to the
test. Execution will continue even if the condition evaluates to
false, but the test will be marked as a failure.



assert() and expect() are the most simple kinds of assertions
criterion has to offer. They both take a mandatory condition as a first
parameter, and an optional failure message:

#include <string.h>
#include <criterion/criterion.h>

Test(sample, test) {
    expect(strlen("Test") == 4, "Expected \"Test\" to have a length of 4.");
    expect(strlen("Hello") == 4, "This will always fail, why did I add this?");
    assert(strlen("") == 0);
}





On top of those, more assertions are available for common operations:


	{assert,expect}_not(Actual, Expected, [Message])

	{assert,expect}_eq(Actual, Expected, [Message])

	{assert,expect}_neq(Actual, Unexpected, [Message])

	{assert,expect}_lt(Actual, Expected, [Message])

	{assert,expect}_leq(Actual, Expected, [Message])

	{assert,expect}_gt(Actual, Expected, [Message])

	{assert,expect}_geq(Actual, Expected, [Message])

	{assert,expect}_float_eq(Actual, Expected, Epsilon, [Message])

	{assert,expect}_float_neq(Actual, Unexpected, Epsilon, [Message])

	{assert,expect}_strings_eq(Actual, Expected, [Message])

	{assert,expect}_strings_neq(Actual, Unexpected, [Message])

	{assert,expect}_strings_lt(Actual, Expected, [Message])

	{assert,expect}_strings_leq(Actual, Expected, [Message])

	{assert,expect}_strings_gt(Actual, Expected, [Message])

	{assert,expect}_strings_geq(Actual, Expected, [Message])

	{assert,expect}_arrays_eq(Actual, Expected, Size, [Message])

	{assert,expect}_arrays_neq(Actual, Unexpected, Size, [Message])






Fixtures

Tests that need some setup and teardown can register functions that will
run before and after the test function:

#include <stdio.h>
#include <criterion/criterion.h>

void setup(void) {
    puts("Runs before the test");
}

void teardown(void) {
    puts("Runs after the test");
}

Test(suite_name, test_name, .init = setup, .fini = teardown) {
    // test contents
}








Testing signals

If a test receives a signal, it will by default be marked as a failure.
You can, however, expect a test to only pass if a special kind of signal
is received:

#include <stddef.h>
#include <signal.h>
#include <criterion/criterion.h>

// This test will fail
Test(sample, failing) {
    int *ptr = NULL;
    *ptr = 42;
}

// This test will pass
Test(sample, passing, .signal = SIGSEGV) {
    int *ptr = NULL;
    *ptr = 42;
}











          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Report Hooks

Report hooks are functions that are called at key moments during the testing
process. These are useful to report statistics gathered during the execution.

A report hook can be declared using the ReportHook macro:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(Phase)() {
}





The macro takes a Phase parameter that indicates the phase at which the function
shall be run. Valid phases are described below.


Testing Phases

The flow of the test process goes as follows:


	PRE_ALL: occurs before running the tests.

	PRE_INIT: occurs before a test is initialized.

	PRE_TEST: occurs after the test initialization, but before the test is run.

	ASSERT: occurs when an assertion is hit

	TEST_CRASH: occurs when a test crashes unexpectedly.

	POST_TEST: occurs after a test ends, but before the test finalization.

	POST_FINI: occurs after a test finalization.

	POST_ALL: occurs after all the tests are done.






Hook Parameters

A report hook may take zero or one parameter. If a parameter is given, it
is undefined behaviour if it is not a pointer type and not of the proper pointed
type for that phase.

Valid types for each phases are:


	struct criterion_test * for PRE_INIT and PRE_TEST.

	struct criterion_test_stats * for POST_TEST, POST_FINI, and TEST_CRASH.

	struct criterion_assert_stats * for ASSERT.

	struct criterion_global_stats * for POST_ALL.



PRE_ALL does not take any parameter.







          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            
  
Environment and CLI

Tests built with Criterion support environment variables to alter
their runtime behaviour.


Environment Variables


	CRITERION_ALWAYS_SUCCEED: when set to 1, the exit status of the test
process will be 0, regardless if the tests failed or not.

	CRITERION_NO_EARLY_EXIT: when set to 1, the test workers shall not
call _exit when done and will properly return from the main and
clean up their process space. This is useful when tracking memory leaks with
valgrind –tool=memcheck.









          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	Criterion 0.1.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  _static/plus.png





_static/minus.png





_static/up.png





_static/down-pressed.png





_static/file.png





_static/down.png





_static/comment-close.png





_static/comment-bright.png





_static/ajax-loader.gif





search.html


    
      Navigation


      
        		
          index


        		Criterion 0.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Franklin "Snaipe" Mathieu.
      Created using Sphinx 1.3.1.
    

  

_static/up-pressed.png





_static/comment.png





