

 Navigation

 	
 index

 	
 next |

 	Criterion 1.2.0 documentation

Criterion

	Introduction
	Philosophy

	Features

	Setup
	Prerequisites

	Installation

	Usage

	Getting started
	Adding tests

	Asserting things

	Configuring tests

	Setting up suite-wise configuration

	Report Hooks
	Testing Phases

	Hook Parameters

	Environment and CLI
	Command line arguments

	Shell Wildcard Pattern

	Environment Variables

	Changing the internals
	Providing your own main

	Implementing your own output provider

	F.A.Q

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Introduction

Criterion is a dead-simple, non-intrusive testing framework for the C
programming language.

Philosophy

Most test frameworks for C require a lot of boilerplate code to
set up tests and test suites – you need to create a main,
then register new test suites, then register the tests within
these suits, and finally call the right functions.

This gives the user great control, at the unfortunate cost of simplicity.

Criterion follows the KISS principle, while keeping the control
the user would have with other frameworks.

Features

	Tests are automatically registered when declared.

	A default entry point is provided, no need to declare a main
unless you want to do special handling.

	Test are isolated in their own process, crashes and signals can be
reported and tested.

	Progress and statistics can be followed in real time with report hooks.

	TAP output format can be enabled with an option.

	Runs on Linux, FreeBSD, Mac OS X, and Windows (compiles only with Cygwin
for the moment).

	xUnit framework structure

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Setup

Prerequisites

Currently, this library only works under *nix systems.

To compile the static library and its dependencies, GCC 4.9+ is needed.

To use the static library, any GNU-C compatible compiler will suffice
(GCC, Clang/LLVM, ICC, MinGW-GCC, ...).

Installation

$ git clone https://github.com/Snaipe/Criterion.git
$ cd Criterion
$./autogen.sh && ./configure && make && sudo make install

Usage

Given a test file named test.c, compile it with -lcriterion:

$ gcc -o test test.c -lcriterion

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Getting started

Adding tests

Adding tests is done using the Test macro:

#include <criterion/criterion.h>

Test(suite_name, test_name) {
 // test contents
}

suite_name and test_name are the identifiers of the test suite and
the test, respectively. These identifiers must follow the language
identifier format.

Tests are automatically sorted by suite, then by name using the alphabetical
order.

Asserting things

Assertions come in two kinds:

	assert* are assertions that are fatal to the current test if failed;
in other words, if the condition evaluates to false, the test is
marked as a failure and the execution of the function is aborted.

	expect* are, in the other hand, assertions that are not fatal to the
test. Execution will continue even if the condition evaluates to
false, but the test will be marked as a failure.

assert() and expect() are the most simple kinds of assertions
criterion has to offer. They both take a mandatory condition as a first
parameter, and an optional failure message:

#include <string.h>
#include <criterion/criterion.h>

Test(sample, test) {
 expect(strlen("Test") == 4, "Expected \"Test\" to have a length of 4.");
 expect(strlen("Hello") == 4, "This will always fail, why did I add this?");
 assert(strlen("") == 0);
}

On top of those, more assertions are available for common operations:

	assert_null(Ptr, [Message]): passes if Ptr is NULL.

	assert_eq(Actual, Expected, [Message]): passes if Actual == Expected.

	assert_lt(Actual, Expected, [Message]): passes if Actual < Expected.

	assert_leq(Actual, Expected, [Message]): passes if Actual <= Expected.

	assert_gt(Actual, Expected, [Message]): passes if Actual > Expected.

	assert_geq(Actual, Expected, [Message]): passes if Actual >= Expected.

	assert_float_eq(Actual, Expected, Epsilon, [Message]):
passes if Actual == Expected with an error of Epsilon.

	assert_arrays_eq(Actual, Expected, Size, [Message]):
passes if all elements of Actual (from 0 to Size - 1) are equals to those
of Expected.

	assert_arrays_eq_cmp(Actual, Expected, Size, Cmp, [Message]):
Same as arrays_eq but equality is defined by the result of the binary
Cmp function.

Equality and lexical comparison assertions are also available for strings:

	assert_strings_eq(Actual, Expected, [Message])

	assert_strings_lt(Actual, Expected, [Message])

	assert_strings_leq(Actual, Expected, [Message])

	assert_strings_gt(Actual, Expected, [Message])

	assert_strings_geq(Actual, Expected, [Message])

And some assertions have a logical negative counterpart:

	assert_not(Condition, [Message])

	assert_not_null(Ptr, [Message])

	assert_neq(Actual, Unexpected, [Message])

	assert_float_neq(Actual, Unexpected, Epsilon, [Message])

	assert_strings_neq(Actual, Unexpected, [Message])

	assert_arrays_neq(Actual, Unexpected, Size, [Message])

	assert_arrays_neq_cmp(Actual, Unexpected, Size, Cmp, [Message])

Of course, every assert has an expect counterpart.

Please note that arrays_(n)eq assertions should not be used on padded
structures – please use arrays_(n)eq_cmp instead.

Configuring tests

Tests may receive optional configuration parameters to alter their behaviour
or provide additional metadata.

Fixtures

Tests that need some setup and teardown can register functions that will
run before and after the test function:

#include <stdio.h>
#include <criterion/criterion.h>

void setup(void) {
 puts("Runs before the test");
}

void teardown(void) {
 puts("Runs after the test");
}

Test(suite_name, test_name, .init = setup, .fini = teardown) {
 // test contents
}

If a setup crashes, you will get a warning message, and the test will be aborted
and marked as a failure.
Is a teardown crashes, you will get a warning message, and the test will keep
its result.

Testing signals

If a test receives a signal, it will by default be marked as a failure.
You can, however, expect a test to only pass if a special kind of signal
is received:

#include <stddef.h>
#include <signal.h>
#include <criterion/criterion.h>

// This test will fail
Test(sample, failing) {
 int *ptr = NULL;
 *ptr = 42;
}

// This test will pass
Test(sample, passing, .signal = SIGSEGV) {
 int *ptr = NULL;
 *ptr = 42;
}

This feature will of course not work on Windows.

Configuration reference

Here is an exhaustive list of all possible configuration parameters you can
pass:

	Parameter
	Type
	Description

	.description
	const char *
	Adds a description. Cannot be NULL.

	.init
	void (*)(void)
	Adds a setup function the be executed before the test.

	.fini
	void (*)(void)
	Adds a teardown function the be executed after the test.

	.disabled
	bool
	Disables the test.

	.signal
	int
	Expect the test to raise the specified signal.

Setting up suite-wise configuration

Tests under the same suite can have a suite-wise configuration – this is done
using the TestSuite macro:

#include <criterion/criterion.h>

TestSuite(suite_name, [params...]);

Test(suite_name, test_1) {
}

Test(suite_name, test_2) {
}

Configuration parameters are the same as above, but applied to the suite itself.

Suite fixtures are run along with test fixtures.

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Report Hooks

Report hooks are functions that are called at key moments during the testing
process. These are useful to report statistics gathered during the execution.

A report hook can be declared using the ReportHook macro:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(Phase)() {
}

The macro takes a Phase parameter that indicates the phase at which the function
shall be run. Valid phases are described below.

Note: there are no guarantees regarding the order of execution of report hooks
on the same phase. In other words, all report hooks of a specific phase could
be executed in any order.

Testing Phases

The flow of the test process goes as follows:

	PRE_ALL: occurs before running the tests.

	PRE_SUITE: occurs before a suite is initialized.

	PRE_INIT: occurs before a test is initialized.

	PRE_TEST: occurs after the test initialization, but before the test is run.

	ASSERT: occurs when an assertion is hit

	TEST_CRASH: occurs when a test crashes unexpectedly.

	POST_TEST: occurs after a test ends, but before the test finalization.

	POST_FINI: occurs after a test finalization.

	POST_SUITE: occurs before a suite is finalized.

	POST_ALL: occurs after all the tests are done.

Hook Parameters

A report hook may take zero or one parameter. If a parameter is given, it
is undefined behaviour if it is not a pointer type and not of the proper pointed
type for that phase.

Valid types for each phases are:

	struct criterion_test_set * for PRE_ALL.

	struct criterion_suite_set * for PRE_SUITE.

	struct criterion_test * for PRE_INIT and PRE_TEST.

	struct criterion_assert_stats * for ASSERT.

	struct criterion_test_stats * for POST_TEST, POST_FINI, and TEST_CRASH.

	struct criterion_suite_stats * for POST_SUITE.

	struct criterion_global_stats * for POST_ALL.

For instance, these are valid report hook declarations for the PRE_TEST phase:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(PRE_TEST)() {
 // not using the parameter
}

ReportHook(PRE_TEST)(struct criterion_test *test) {
 // using the parameter
}

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Environment and CLI

Tests built with Criterion expose by default various command line switchs
and environment variables to alter their runtime behaviour.

Command line arguments

	-h or --help: Show a help message with the available switches.

	-v or --version: Prints the version of criterion that has been
linked against.

	-l or --list: Print all the tests in a list.

	-f or --fail-fast: Exit after the first test failure.

	--ascii: Don’t use fancy unicode symbols or colors in the output.

	--pattern [PATTERN]: Run tests whose string identifier matches
the given shell wildcard pattern (see dedicated section below). (*nix only)

	--no-early-exit: The test workers shall not prematurely exit when done and
will properly return from the main, cleaning up their process space.
This is useful when tracking memory leaks with valgrind --tool=memcheck.

	--always-succeed: The process shall exit with a status of 0.

	--tap: Enables the TAP (Test Anything Protocol) output format.

	--verbose[=level]: Makes the output verbose. When provided with an integer,
sets the verbosity level to that integer.

Shell Wildcard Pattern

Patterns in criterion are matched against a test’s string identifier with
fnmatch. This feature is only available on *nix systems where fnmatch
is provided.

Special characters used in shell-style wildcard patterns are:

	Pattern
	Meaning

	*
	matches everything

	?
	matches any character

	[seq]
	matches any character in seq

	[!seq]
	matches any character not in seq

A test string identifier is of the form suite-name/test-name, so a pattern
of simple/* matches every tests in the simple suite, */passing
matches all tests named passing regardless of the suite, and * matches
every possible test.

Environment Variables

Environment variables are alternatives to command line switches when set to 1.

	CRITERION_ALWAYS_SUCCEED: Same as --always-succeed.

	CRITERION_NO_EARLY_EXIT: Same as --no-early-exit.

	CRITERION_ENABLE_TAP: Same as --tap.

	CRITERION_FAIL_FAST: Same as --fail-fast.

	CRITERION_USE_ASCII: Same as --ascii.

	CRITERION_VERBOSITY_LEVEL: Same as --verbose. Sets the verbosity level
to its value.

	CRITERION_TEST_PATTERN: Same as --pattern. Sets the test pattern
to its value. (*nix only)

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Criterion 1.2.0 documentation

Changing the internals

Providing your own main

If you are not satisfied with the default CLI or environment variables, you
can define your own main function.

Configuring the test runner

You’d usually want to configure the test runner before calling it.
Configuration is done by setting fields in a global variable named
criterion_options (include criterion/options.h).

Here is an exhaustive list of these fields:

	Field
	Type
	Description

	logging_threshold
	enum criterion_logging_level
	The logging level

	output_provider
	struct criterion_output_provider *
	The output provider (see below)

	no_early_exit
	bool
	True iff the test worker should exit early

	always_succeed
	bool
	True iff criterion_run_all_tests should always returns 1

	use_ascii
	bool
	True iff the outputs should use the ASCII charset

	fail_fast
	bool
	True iff the test runner should abort after the first failure

	pattern
	const char *
	The pattern of the tests that should be executed

Starting the test runner

The test runner can be called with criterion_run_all_tests. The function
returns 0 if one test or more failed, 1 otherwise.

Implementing your own output provider

In case you are not satisfied by the default output provider, you can implement
yours. To do so, simply set the output_provider option to your custom
output provider.

Each function contained in the structure is called during one of the standard
phase of the criterion runner.

For more insight on how to implement this, see other existing output providers
in src/log/.

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Criterion 1.2.0 documentation

F.A.Q

Q. When running the test suite in Windows’ cmd.exe, the test executable
prints weird characters, how do I fix that?

A. Windows’ cmd.exe is not an unicode ANSI-compatible terminal emulator.
There are plenty of ways to fix that behaviour:

	Pass --ascii to the test suite when executing.

	Define the CRITERION_USE_ASCII environment variable to 1.

	Get a better terminal emulator, such as the one shipped with Git or Cygwin.

Q. I’m having an issue with the library, what can I do ?

A. Open a new issue on the github issue tracker [https://github.com/Snaipe/Criterion/issues],
and describe the problem you are experiencing, along with the platform you are
running criterion on.

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Criterion 1.2.0 documentation

Index

 Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/down.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Criterion 1.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/comment-bright.png

_static/file.png

