
Criterion Documentation
Release 2.1.0

Franklin "Snaipe" Mathieu

November 25, 2015

Contents

1 Introduction 3
1.1 Philosophy . 3
1.2 Features . 3

2 Setup 5
2.1 Prerequisites . 5
2.2 Building from source . 5
2.3 Installing the library and language files (Linux, OS X, FreeBSD) 5
2.4 Usage . 5

3 Getting started 7
3.1 Adding tests . 7
3.2 Asserting things . 7
3.3 Configuring tests . 8
3.4 Setting up suite-wise configuration . 9

4 Assertion reference 11
4.1 Common Assertions . 11
4.2 String Assertions . 12
4.3 Array Assertions . 13
4.4 Exception Assertions . 13
4.5 File Assertions . 14

5 Report Hooks 15
5.1 Testing Phases . 15
5.2 Hook Parameters . 16

6 Environment and CLI 17
6.1 Command line arguments . 17
6.2 Shell Wildcard Pattern . 17
6.3 Environment Variables . 18

7 Using parameterized tests 19
7.1 Adding parameterized tests . 19
7.2 Passing multiple parameters . 19
7.3 Configuring parameterized tests . 21

8 Using theories 23
8.1 Adding theories . 23

i

8.2 Assertions and invariants . 23
8.3 Configuring theories . 24
8.4 Full sample & purpose of theories . 24
8.5 What’s the difference between theories and parameterized tests ? 26

9 Changing the internals 29
9.1 Providing your own main . 29
9.2 Implementing your own output provider . 30

10 F.A.Q 31

ii

Criterion Documentation, Release 2.1.0

Contents 1

Criterion Documentation, Release 2.1.0

2 Contents

CHAPTER 1

Introduction

Criterion is a dead-simple, non-intrusive testing framework for the C programming language.

1.1 Philosophy

Most test frameworks for C require a lot of boilerplate code to set up tests and test suites – you need to
create a main, then register new test suites, then register the tests within these suits, and finally call the
right functions.

This gives the user great control, at the unfortunate cost of simplicity.

Criterion follows the KISS principle, while keeping the control the user would have with other frame-
works.

1.2 Features

• Tests are automatically registered when declared.

• A default entry point is provided, no need to declare a main unless you want to do special handling.

• Test are isolated in their own process, crashes and signals can be reported and tested.

• Progress and statistics can be followed in real time with report hooks.

• TAP output format can be enabled with an option.

• Runs on Linux, FreeBSD, Mac OS X, and Windows (Compiling with MinGW GCC).

• xUnit framework structure

3

Criterion Documentation, Release 2.1.0

4 Chapter 1. Introduction

CHAPTER 2

Setup

2.1 Prerequisites

The library is supported on Linux, OS X, FreeBSD, and Windows.

The following compilers are supported to compile both the library and the tests: * GCC 4.9+ * Clang 3.4+
* MSVC 14+ (Included in Visual Studio 2015 or later)

2.2 Building from source

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build .

2.3 Installing the library and language files (Linux, OS X,
FreeBSD)

From the build directory created above, run with an elevated shell:

$ make install

2.4 Usage

To compile your tests with Criterion, you need to make sure to:

1. Add the include directory to the header search path

2. Install the library to your library search path

3. Link Criterion to your executable.

This should be all you need.

5

Criterion Documentation, Release 2.1.0

6 Chapter 2. Setup

CHAPTER 3

Getting started

3.1 Adding tests

Adding tests is done using the Test macro:

#include <criterion/criterion.h>

Test(suite_name, test_name) {
// test contents

}

suite_name and test_name are the identifiers of the test suite and the test, respectively. These
identifiers must follow the language identifier format.

Tests are automatically sorted by suite, then by name using the alphabetical order.

3.2 Asserting things

Assertions come in two kinds:

• cr_assert* are assertions that are fatal to the current test if failed; in other words, if the condition
evaluates to false, the test is marked as a failure and the execution of the function is aborted.

• cr_expect* are, in the other hand, assertions that are not fatal to the test. Execution will continue
even if the condition evaluates to false, but the test will be marked as a failure.

cr_assert() and cr_expect() are the most simple kinds of assertions criterion has to offer. They
both take a mandatory condition as a first parameter, and an optional failure message:

#include <string.h>
#include <criterion/criterion.h>

Test(sample, test) {
cr_expect(strlen("Test") == 4, "Expected \"Test\" to have a length of 4.");
cr_expect(strlen("Hello") == 4, "This will always fail, why did I add this?");
cr_assert(strlen("") == 0);

}

On top of those, more assertions are available for common operations. See Assertion reference for a
complete list.

7

Criterion Documentation, Release 2.1.0

3.3 Configuring tests

Tests may receive optional configuration parameters to alter their behaviour or provide additional meta-
data.

3.3.1 Fixtures

Tests that need some setup and teardown can register functions that will run before and after the test
function:

#include <stdio.h>
#include <criterion/criterion.h>

void setup(void) {
puts("Runs before the test");

}

void teardown(void) {
puts("Runs after the test");

}

Test(suite_name, test_name, .init = setup, .fini = teardown) {
// test contents

}

If a setup crashes, you will get a warning message, and the test will be aborted and marked as a failure. Is
a teardown crashes, you will get a warning message, and the test will keep its result.

3.3.2 Testing signals

If a test receives a signal, it will by default be marked as a failure. You can, however, expect a test to only
pass if a special kind of signal is received:

#include <stddef.h>
#include <signal.h>
#include <criterion/criterion.h>

// This test will fail
Test(sample, failing) {

int *ptr = NULL;

*ptr = 42;
}

// This test will pass
Test(sample, passing, .signal = SIGSEGV) {

int *ptr = NULL;

*ptr = 42;
}

This feature will also work (to some extent) on Windows for the following signals on some exceptions:

8 Chapter 3. Getting started

Criterion Documentation, Release 2.1.0

Sig-
nal

Triggered by

SIGSEGVSTATUS_ACCESS_VIOLATION, STATUS_DATATYPE_MISALIGNMENT,
STATUS_ARRAY_BOUNDS_EXCEEDED, STATUS_GUARD_PAGE_VIOLATION,
STATUS_IN_PAGE_ERROR, STATUS_NO_MEMORY,
STATUS_INVALID_DISPOSITION, STATUS_STACK_OVERFLOW

SIG-
ILL

STATUS_ILLEGAL_INSTRUCTION, STATUS_PRIVILEGED_INSTRUCTION,
STATUS_NONCONTINUABLE_EXCEPTION

SIG-
INT

STATUS_CONTROL_C_EXIT

SIGFPE STATUS_FLOAT_DENORMAL_OPERAND, STATUS_FLOAT_DIVIDE_BY_ZERO,
STATUS_FLOAT_INEXACT_RESULT, STATUS_FLOAT_INVALID_OPERATION,
STATUS_FLOAT_OVERFLOW, STATUS_FLOAT_STACK_CHECK,
STATUS_FLOAT_UNDERFLOW, STATUS_INTEGER_DIVIDE_BY_ZERO,
STATUS_INTEGER_OVERFLOW

SIGALRMSTATUS_TIMEOUT

See the windows exception reference for more details on each exception.

3.3.3 Configuration reference

Here is an exhaustive list of all possible configuration parameters you can pass:

Parameter Type Description
.description const char * Adds a description. Cannot be NULL.
.init void (*)(void) Adds a setup function the be executed before the test.
.fini void (*)(void) Adds a teardown function the be executed after the test.
.disabled bool Disables the test.
.signal int Expect the test to raise the specified signal.
.exit_code int Expect the test to exit with the specified status.

3.4 Setting up suite-wise configuration

Tests under the same suite can have a suite-wise configuration – this is done using the TestSuite
macro:

#include <criterion/criterion.h>

TestSuite(suite_name, [params...]);

Test(suite_name, test_1) {
}

Test(suite_name, test_2) {
}

Configuration parameters are the same as above, but applied to the suite itself.

Suite fixtures are run along with test fixtures.

3.4. Setting up suite-wise configuration 9

https://msdn.microsoft.com/en-us/library/windows/desktop/ms679356(v=vs.85).aspx

Criterion Documentation, Release 2.1.0

10 Chapter 3. Getting started

CHAPTER 4

Assertion reference

This is an exhaustive list of all assertion macros that Criterion provides.

As each assert macros have an expect counterpart with the exact same number of parameters and
name suffix, there is no benefit in adding expect macros to this list. Hence only assert macros are
represented here.

4.1 Common Assertions

Macro Passes if and only if Notes
cr_assert(Condition, [Message,
[Args...]])

Condition is true.

cr_assert_not(Condition, [Message,
[Args...]])

Condition is false.

cr_assert_null(Value, [Message,
[Args...]])

Value is NULL.

cr_assert_not_null(Value, [Message,
[Args...]])

Value is not NULL.

cr_assert_eq(Actual, Expected,
[Message, [Args...]])

Actual is equal to Expected. Compatible with C++
operator overloading

cr_assert_neq(Actual, Unexpected,
[Message, [Args...]])

Actual is not equal to
Unexpected.

Compatible with C++
operator overloading

cr_assert_lt(Actual, Reference,
[Message, [Args...]])

Actual is less than Reference. Compatible with C++
operator overloading

cr_assert_leq(Actual, Reference,
[Message, [Args...]])

Actual is less or equal to
Reference.

Compatible with C++
operator overloading

cr_assert_gt(Actual, Reference,
[Message, [Args...]])

Actual is greater than
Reference.

Compatible with C++
operator overloading

cr_assert_geq(Actual, Reference,
[Message, [Args...]])

Actual is greater or equal to
Reference.

Compatible with C++
operator overloading

cr_assert_float_eq(Actual,
Expected, Epsilon, [Message,
[Args...]])

Actual is equal to Expected
with a tolerance of Epsilon.

Use this to test
equality between
floats

cr_assert_float_neq(Actual,
Unexpected, Epsilon, [Message,
[Args...]])

Actual is not equal to
Unexpected with a tolerance of
Epsilon.

Use this to test
inequality between
floats

11

Criterion Documentation, Release 2.1.0

4.2 String Assertions

Note: these macros are meant to deal with native strings, i.e. char arrays. Most of them won’t work on
std::string in C++, with some exceptions – for std::string, you should use regular comparison
assersions, as listed above.

Macro Passes if and only if Notes
cr_assert_str_empty(Value, [Message,
[Args...]])

Value is an empty string. Also works on
std::string

cr_assert_str_not_empty(Value,
[Message, [Args...]])

Value is not an empty string. Also works on
std::string

cr_assert_str_eq(Actual, Expected,
[Message, [Args...]])

Actual is lexicographically equal to
Expected.

cr_assert_str_neq(Actual, Unexpected,
[Message, [Args...]])

Actual is not lexicographically equal
to Unexpected.

cr_assert_str_lt(Actual, Reference,
[Message, [Args...]])

Actual is lexicographically less than
Reference.

cr_assert_str_leq(Actual, Reference,
[Message, [Args...]])

Actual is lexicographically less or
equal to Reference.

cr_assert_str_gt(Actual, Reference,
[Message, [Args...]])

Actual is lexicographically greater
than Reference.

cr_assert_str_geq(Actual, Reference,
[Message, [Args...]])

Actual is lexicographically greater or
equal to Reference.

12 Chapter 4. Assertion reference

Criterion Documentation, Release 2.1.0

4.3 Array Assertions

Macro Passes if and only if Notes
cr_assert_arr_eq(Actual,
Expected, [Message, [Args...]])

Actual is byte-to-byte
equal to Expected.

This should not be used on struct
arrays, consider using
cr_assert_arr_eq_cmp instead.

cr_assert_arr_neq(Actual,
Unexpected, [Message,
[Args...]])

Actual is not
byte-to-byte equal to
Unexpected.

This should not be used on struct
arrays, consider using
cr_assert_arr_neq_cmp
instead.

cr_assert_arr_eq_cmp(Actual,
Expected, Size, Cmp,
[Message, [Args...]])

Actual is
comparatively equal to
Expected

Only available in C++ and GNU C99

cr_assert_arr_neq_cmp(Actual,
Unexpected, Size, Cmp,
[Message, [Args...]])

Actual is not
comparatively equal to
Expected

Only available in C++ and GNU C99

cr_assert_arr_lt_cmp(Actual,
Reference, Size, Cmp,
[Message, [Args...]])

Actual is
comparatively less than
Reference

Only available in C++ and GNU C99

cr_assert_arr_leq_cmp(Actual,
Reference, Size, Cmp,
[Message, [Args...]])

Actual is
comparatively less or
equal to Reference

Only available in C++ and GNU C99

cr_assert_arr_gt_cmp(Actual,
Reference, Size, Cmp,
[Message, [Args...]])

Actual is
comparatively greater
than Reference

Only available in C++ and GNU C99

cr_assert_arr_geq_cmp(Actual,
Reference, Size, Cmp,
[Message, [Args...]])

Actual is
comparatively greater
or equal to
Reference

Only available in C++ and GNU C99

4.4 Exception Assertions

The following assertion macros are only defined for C++.

Macro Passes if and only if Notes
cr_assert_throw(Statement, Exception,
[Message, [Args...]])

Statement throws an instance of
Exception.

cr_assert_no_throw(Statement, Exception,
[Message, [Args...]])

Statement does not throws an instance
of Exception.

cr_assert_any_throw(Statement, [Message,
[Args...]])

Statement throws any kind of exception.

cr_assert_none_throw(Statement, [Message,
[Args...]])

Statement does not throw any
exception.

4.3. Array Assertions 13

Criterion Documentation, Release 2.1.0

4.5 File Assertions

Macro Passes if and only if Notes
cr_assert_file_contents_eq_str(File,
ExpectedContents, [Message, [Args...]])

The contents of File are equal to the string
ExpectedContents.

cr_assert_file_contents_neq_str(File,
ExpectedContents, [Message, [Args...]])

The contents of File are not equal to the
string ExpectedContents.

cr_assert_stdout_eq_str(ExpectedContents,
[Message, [Args...]])

The contents of stdout are equal to the
string ExpectedContents.

cr_assert_stdout_neq_str(ExpectedContents,
[Message, [Args...]])

The contents of stdout are not equal to the
string ExpectedContents.

cr_assert_stderr_eq_str(ExpectedContents,
[Message, [Args...]])

The contents of stderr are equal to the
string ExpectedContents.

cr_assert_stderr_neq_str(ExpectedContents,
[Message, [Args...]])

The contents of stderr are not equal to the
string ExpectedContents.

cr_assert_file_contents_eq(File, RefFile,
[Message, [Args...]])

The contents of File are equal to the
contents of RefFile.

cr_assert_file_contents_neq(File, RefFile,
[Message, [Args...]])

The contents of File are not equal to the
contents of RefFile.

cr_assert_stdout_eq(RefFile, [Message,
[Args...]])

The contents of stdout are equal to the
contents of RefFile.

cr_assert_stdout_neq(RefFile, [Message,
[Args...]])

The contents of stdout are not equal to the
contents of RefFile.

cr_assert_stderr_eq(RefFile, [Message,
[Args...]])

The contents of stderr are equal to the
contents of RefFile.

cr_assert_stderr_neq(RefFile, [Message,
[Args...]])

The contents of stderr are not equal to the
contents of RefFile.

14 Chapter 4. Assertion reference

CHAPTER 5

Report Hooks

Report hooks are functions that are called at key moments during the testing process. These are useful to
report statistics gathered during the execution.

A report hook can be declared using the ReportHook macro:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(Phase)() {
}

The macro takes a Phase parameter that indicates the phase at which the function shall be run. Valid
phases are described below.

Note: there are no guarantees regarding the order of execution of report hooks on the same phase. In other
words, all report hooks of a specific phase could be executed in any order.

5.1 Testing Phases

The flow of the test process goes as follows:

1. PRE_ALL: occurs before running the tests.

2. PRE_SUITE: occurs before a suite is initialized.

3. PRE_INIT: occurs before a test is initialized.

4. PRE_TEST: occurs after the test initialization, but before the test is run.

5. ASSERT: occurs when an assertion is hit

6. THEORY_FAIL: occurs when a theory iteration fails.

7. TEST_CRASH: occurs when a test crashes unexpectedly.

8. POST_TEST: occurs after a test ends, but before the test finalization.

9. POST_FINI: occurs after a test finalization.

10. POST_SUITE: occurs before a suite is finalized.

11. POST_ALL: occurs after all the tests are done.

15

Criterion Documentation, Release 2.1.0

5.2 Hook Parameters

A report hook takes exactly one parameter. Valid types for each phases are:

• struct criterion_test_set * for PRE_ALL.

• struct criterion_suite_set * for PRE_SUITE.

• struct criterion_test * for PRE_INIT and PRE_TEST.

• struct criterion_assert_stats * for ASSERT.

• struct criterion_theory_stats * for THEORY_FAIL.

• struct criterion_test_stats * for POST_TEST, POST_FINI, and TEST_CRASH.

• struct criterion_suite_stats * for POST_SUITE.

• struct criterion_global_stats * for POST_ALL.

For instance, this is a valid report hook declaration for the PRE_TEST phase:

#include <criterion/criterion.h>
#include <criterion/hooks.h>

ReportHook(PRE_TEST)(struct criterion_test *test) {
// using the parameter

}

16 Chapter 5. Report Hooks

CHAPTER 6

Environment and CLI

Tests built with Criterion expose by default various command line switchs and environment variables to
alter their runtime behaviour.

6.1 Command line arguments

• -h or --help: Show a help message with the available switches.

• -v or --version: Prints the version of criterion that has been linked against.

• -l or --list: Print all the tests in a list.

• -f or --fail-fast: Exit after the first test failure.

• --ascii: Don’t use fancy unicode symbols or colors in the output.

• --pattern [PATTERN]: Run tests whose string identifier matches the given shell wildcard pat-
tern (see dedicated section below). (*nix only)

• --no-early-exit: The test workers shall not prematurely exit when done and will properly
return from the main, cleaning up their process space. This is useful when tracking memory leaks
with valgrind --tool=memcheck.

• -S or --short-filename: The filenames are displayed in their short form.

• --always-succeed: The process shall exit with a status of 0.

• --tap: Enables the TAP (Test Anything Protocol) output format.

• --verbose[=level]: Makes the output verbose. When provided with an integer, sets the ver-
bosity level to that integer.

6.2 Shell Wildcard Pattern

Patterns in criterion are matched against a test’s string identifier with fnmatch. This feature is only
available on *nix systems where fnmatch is provided.

Special characters used in shell-style wildcard patterns are:

17

Criterion Documentation, Release 2.1.0

Pattern Meaning
* matches everything
? matches any character
[seq] matches any character in seq
[!seq] matches any character not in seq

A test string identifier is of the form suite-name/test-name, so a pattern of simple/* matches
every tests in the simple suite, */passing matches all tests named passing regardless of the suite,
and * matches every possible test.

6.3 Environment Variables

Environment variables are alternatives to command line switches when set to 1.

• CRITERION_ALWAYS_SUCCEED: Same as --always-succeed.

• CRITERION_NO_EARLY_EXIT: Same as --no-early-exit.

• CRITERION_ENABLE_TAP: Same as --tap.

• CRITERION_FAIL_FAST: Same as --fail-fast.

• CRITERION_USE_ASCII: Same as --ascii.

• CRITERION_SHORT_FILENAME: Same as --short-filename.

• CRITERION_VERBOSITY_LEVEL: Same as --verbose. Sets the verbosity level to its value.

• CRITERION_TEST_PATTERN: Same as --pattern. Sets the test pattern to its value. (*nix
only)

18 Chapter 6. Environment and CLI

CHAPTER 7

Using parameterized tests

Parameterized tests are useful to repeat a specific test logic over a finite set of parameters.

Due to limitations on how generated parameters are passed, parameterized tests can only accept one
pointer parameter; however, this is not that much of a problem since you can just pass a structure contain-
ing the context you need.

7.1 Adding parameterized tests

Adding parameterized tests is done by defining the parameterized test function, and the parameter gener-
ator function:

#include <criterion/parameterized.h>

ParameterizedTestParameter(suite_name, test_name) = {
void *params;
size_t nb_params;

// generate parameter set
return cr_make_param_array(Type, params, nb_params);

}

ParameterizedTest(Type *param, suite_name, test_name) {
// contents of the test

}

suite_name and test_name are the identifiers of the test suite and the test, respectively. These
identifiers must follow the language identifier format.

Type is the compound type of the generated array. params and nb_params are the pointer and the
length of the generated array, respectively.

7.2 Passing multiple parameters

As said earlier, parameterized tests only take one parameter, so passing multiple parameters is, in the strict
sense, not possible. However, one can easily use a struct to hold the context as a workaround:

#include <criterion/parameterized.h>

struct my_params {

19

Criterion Documentation, Release 2.1.0

int param0;
double param1;
...

};

ParameterizedTestParameter(suite_name, test_name) = {
size_t nb_params = 32;
struct my_params *params = cr_malloc(sizeof (struct my_params) * nb_params);

// generate parameter set

params[0] = ...
params[1] = ...

...

return cr_make_param_array(struct my_params, params, nb_params);
}

ParameterizedTest(struct my_params *param, suite_name, test_name) {
// access param.param0, param.param1, ...

}

7.2.1 Dynamically allocating fields

Any dynamic memory allocation done from a ParameterizedTestParameter function must be done with
cr_malloc, cr_calloc, or cr_realloc.

Any pointer returned by those 3 functions must be passed to cr_free after you have no more use of it.

It is undefined behaviour to use any other allocation function (such as malloc) from the scope of a
ParameterizedTestParameter function.

In C++, these methods should not be called explicitely – instead, you should use:

• criterion::new_obj<Type>(params...) to allocate an object of type Type and call
its constructor taking params.... The function possess the exact same semantics as new
Type(params...).

• criterion::delete_obj(obj) to destroy an object previously allocated by
criterion::new_obj. The function possess the exact same semantics as delete obj.

• criterion::new_arr<Type>(size) to allocate an array of objects of type Type and length
size. Type is initialized by calling its default constructor. The function possess the exact same
semantics as new Type[size].

• criterion::delete_arr(array) to destroy an array previously allocated by
criterion::new_arr. The function possess the exact same semantics as delete[]
array.

7.2.2 Freeing dynamically allocated parameter fields

One can pass an extra parameter to cr_make_param_array to specify the cleanup function that
should be called on the generated parameter context:

#include <criterion/parameterized.h>

20 Chapter 7. Using parameterized tests

Criterion Documentation, Release 2.1.0

struct my_params {
int *some_int_ptr;

};

void cleanup_params(struct criterion_test_params *ctp) {
cr_free(((struct my_params *) ctp->params)->some_int_ptr);

}

ParameterizedTestParameter(suite_name, test_name) = {
static my_params param = {

.some_int_ptr = cr_malloc(sizeof (int));
};

*param.some_int_ptr = 42;

return cr_make_param_array(struct my_params, ¶m, 1, cleanup_params);
}

7.3 Configuring parameterized tests

Parameterized tests can optionally recieve configuration parameters to alter their own behaviour, and
are applied to each iteration of the parameterized test individually (this means that the initialization and
finalization runs once per iteration). Those parameters are the same ones as the ones of the Test macro
function (c.f. Configuration reference).

7.3. Configuring parameterized tests 21

Criterion Documentation, Release 2.1.0

22 Chapter 7. Using parameterized tests

CHAPTER 8

Using theories

Theories are a powerful tool for test-driven development, allowing you to test a specific behaviour against
all permutations of a set of user-defined parameters known as “data points”.

8.1 Adding theories

Adding theories is done by defining data points and a theory function:

#include <criterion/theories.h>

TheoryDataPoints(suite_name, test_name) = {
DataPoints(Type0, val0, val1, val2, ..., valN),
DataPoints(Type1, val0, val1, val2, ..., valN),
...
DataPoints(TypeN, val0, val1, val2, ..., valN),

}

Theory((Type0 arg0, Type1 arg1, ..., TypeN argN), suite_name, test_name) {
}

suite_name and test_name are the identifiers of the test suite and the test, respectively. These
identifiers must follow the language identifier format.

Type0/arg0 through TypeN/argN are the parameter types and names of theory theory function and
are available in the body of the function.

Datapoints are declared in the same number, type, and order than the parameters inside the
TheoryDataPoints macro, with the DataPoints macro. Beware! It is undefined behaviour to
not have a matching number and type of theory parameters and datatypes.

Each DataPoints must then specify the values that will be used for the theory parameter it is linked to
(val0 through valN).

8.2 Assertions and invariants

You can use any cr_assert or cr_expect macro functions inside the body of a theory function.

Theory invariants are enforced through the cr_assume(Condition)macro function: if Condition
is false, then the current theory iteration aborts without making the test fail.

On top of those, more assume macro functions are available for common operations:

23

http://web.archive.org/web/20110608210825/http://shareandenjoy.saff.net/tdd-specifications.pdf

Criterion Documentation, Release 2.1.0

Macro Description
cr_assume_not(Condition) Assumes Condition is false.
cr_assume_null(Ptr) Assumes Ptr is NULL.
cr_assume_not_null(Ptr) Assumes Ptr is not NULL.
cr_assume_eq(Actual,
Expected)

Assumes Actual == Expected.

cr_assume_neq(Actual,
Unexpected)

Assumes Actual != Expected.

cr_assume_lt(Actual,
Expected)

Assumes Actual < Expected.

cr_assume_leq(Actual,
Expected)

Assumes Actual <= Expected.

cr_assume_gt(Actual,
Expected)

Assumes Actual > Expected.

cr_assume_geq(Actual,
Expected)

Assumes Actual >= Expected.

cr_assume_float_eq(Actual,
Expected, Epsilon)

Assumes Actual == Expected with an error of Epsilon.

cr_assume_float_neq(Actual,
Unexpected, Epsilon)

Assumes Actual != Expected with an error of Epsilon.

cr_assume_strings_eq(Actual,
Expected)

Assumes Actual and Expected are the same string.

cr_assume_strings_neq(Actual,
Unexpected)

Assumes Actual and Expected are not the same string.

cr_assume_strings_lt(Actual,
Expected)

Assumes Actual is less than Expected lexicographically.

cr_assume_strings_leq(Actual,
Expected)

Assumes Actual is less or equal to Expected
lexicographically.

cr_assume_strings_gt(Actual,
Expected)

Assumes Actual is greater than Expected
lexicographically.

cr_assume_strings_geq(Actual,
Expected)

Assumes Actual is greater or equal to Expected
lexicographically.

cr_assume_arrays_eq(Actual,
Expected, Size)

Assumes all elements of Actual (from 0 to Size - 1) are
equals to those of Expected.

cr_assume_arrays_neq(Actual,
Unexpected, Size)

Assumes one or more elements of Actual (from 0 to Size -
1) differs from their counterpart in Expected.

8.3 Configuring theories

Theories can optionally recieve configuration parameters to alter the behaviour of the underlying test; as
such, those parameters are the same ones as the ones of the Test macro function (c.f. Configuration
reference).

8.4 Full sample & purpose of theories

We will illustrate how useful theories are with a simple example using Criterion:

24 Chapter 8. Using theories

Criterion Documentation, Release 2.1.0

8.4.1 The basics of theories

Let us imagine that we want to test if the algebraic properties of integers, and specifically concerning
multiplication, are respected by the C language:

int my_mul(int lhs, int rhs) {
return lhs * rhs;

}

Now, we know that multiplication over integers is commutative, so we first test that:

#include <criterion/criterion.h>

Test(algebra, multiplication_is_commutative) {
cr_assert_eq(my_mul(2, 3), my_mul(3, 2));

}

However, this test is imperfect, because there is not enough triangulation to insure that my_mul is indeed
commutative. One might be tempted to add more assertions on other values, but this will never be good
enough: commutativity should work for any pair of integers, not just an arbitrary set, but, to be fair, you
cannot just test this behaviour for every integer pair that exists.

Theories purposely bridge these two issues by introducing the concept of “data point” and by refactoring
the repeating logic into a dedicated function:

#include <criterion/theories.h>

TheoryDataPoints(algebra, multiplication_is_commutative) = {
DataPoints(int, [...]),
DataPoints(int, [...]),

};

Theory((int lhs, int rhs), algebra, multiplication_is_commutative) {
cr_assert_eq(my_mul(lhs, rhs), my_mul(rhs, lhs));

}

As you can see, we refactored the assertion into a theory taking two unspecified integers.

We first define some data points in the same order and type the parameters have, from left to right: the
first DataPoints(int, ...) will define the set of values passed to the int lhs parameter, and
the second will define the one passed to int rhs.

Choosing the values of the data point is left to you, but we might as well use “interesting” values: 0, -1,
1, -2, 2, INT_MAX, and INT_MIN:

#include <limits.h>

TheoryDataPoints(algebra, multiplication_is_commutative) = {
DataPoints(int, 0, -1, 1, -2, 2, INT_MAX, INT_MIN),
DataPoints(int, 0, -1, 1, -2, 2, INT_MAX, INT_MIN),

};

8.4.2 Using theory invariants

The second thing we can test on multiplication is that it is the inverse function of division. Then, given
the division operation:

8.4. Full sample & purpose of theories 25

Criterion Documentation, Release 2.1.0

int my_div(int lhs, int rhs) {
return lhs / rhs;

}

The associated theory is straight-forward:

#include <criterion/theories.h>

TheoryDataPoints(algebra, multiplication_is_inverse_of_division) = {
DataPoints(int, 0, -1, 1, -2, 2, INT_MAX, INT_MIN),
DataPoints(int, 0, -1, 1, -2, 2, INT_MAX, INT_MIN),

};

Theory((int lhs, int rhs), algebra, multiplication_is_inverse_of_division) {
cr_assert_eq(lhs, my_div(my_mul(lhs, rhs), rhs));

}

However, we do have a problem because you cannot have the theory function divide by 0. For this purpose,
we can assume than rhs will never be 0:

Theory((int lhs, int rhs), algebra, multiplication_is_inverse_of_division) {
cr_assume(rhs != 0);
cr_assert_eq(lhs, my_div(my_mul(lhs, rhs), rhs));

}

cr_assume will abort the current theory iteration if the condition is not fulfiled.

Running the test at that point will raise a big problem with the current implementation of my_mul and
my_div:

[----] theories.c:24: Assertion failed: (a) == (bad_div(bad_mul(a, b), b))
[----] Theory algebra::multiplication_is_inverse_of_division failed with the following parameters: (2147483647, 2)
[----] theories.c:24: Assertion failed: (a) == (bad_div(bad_mul(a, b), b))
[----] Theory algebra::multiplication_is_inverse_of_division failed with the following parameters: (-2147483648, 2)
[----] theories.c:24: Unexpected signal caught below this line!
[FAIL] algebra::multiplication_is_inverse_of_division: CRASH!

The theory shows that my_div(my_mul(INT_MAX, 2), 2) and my_div(my_mul(INT_MIN,
2), 2) does not respect the properties for multiplication: it happens that the behaviour of these two
functions is undefined because the operation overflows.

Similarly, the test crashes at the end; debugging shows that the source of the crash is the divison of
INT_MAX by -1, which is undefined.

Fixing this is as easy as changing the prototypes of my_mul and my_div to operate on long long
rather than int.

8.5 What’s the difference between theories and parameterized
tests ?

While it may at first seem that theories and parameterized tests are the same, just because they happen to
take multiple parameters does not mean that they logically behave in the same manner.

Parameterized tests are useful to test a specific logic against a fixed, finite set of examples that you need
to work.

Theories are, well, just that: theories. They represent a test against an universal truth, regardless of the
input data matching its predicates.

26 Chapter 8. Using theories

Criterion Documentation, Release 2.1.0

Implementation-wise, Criterion also marks the separation by the way that both are executed:

Each parameterized test iteration is run in its own test; this means that one parameterized test acts as a
collection of many tests, and gets reported as such.

On the other hand, a theory act as one single test, since the size and contents of the generated data set
is not relevant. It does not make sense to say that an universal truth is “partially true”, so if one of the
iteration fails, then the whole test fails.

8.5. What’s the difference between theories and parameterized tests ? 27

Criterion Documentation, Release 2.1.0

28 Chapter 8. Using theories

CHAPTER 9

Changing the internals

9.1 Providing your own main

If you are not satisfied with the default CLI or environment variables, you can define your own main
function.

9.1.1 Configuring the test runner

First and foremost, you need to generate the test set; this is done by calling
criterion_initialize(). The function returns a struct criterion_test_set *,
that you need to pass to criterion_run_all_tests later on.

At the very end of your main, you also need to call criterion_finalize with the test set as param-
eter to free any ressources initialized by criterion earlier.

You’d usually want to configure the test runner before calling it. Configuration is done by setting fields in
a global variable named criterion_options (include criterion/options.h).

Here is an exhaustive list of these fields:

Field Type Description
log-
ging_threshold

enum criterion_logging_level The logging level

output_provider struct
criterion_output_provider *

The output provider (see below)

no_early_exit bool True iff the test worker should exit early
always_succeed bool True iff criterion_run_all_tests should always

returns 1
use_ascii bool True iff the outputs should use the ASCII charset
fail_fast bool True iff the test runner should abort after the first

failure
pattern const char * The pattern of the tests that should be executed

if you want criterion to provide its own default CLI parameters and environment variables
handling, you can also call criterion_handle_args(int argc, char *argv[], bool
handle_unknown_arg) with the proper argc/argv. handle_unknown_arg, if set to true, is
here to tell criterion to print its usage when an unknown CLI parameter is encountered. If you want to add
your own parameters, you should set it to false.

The function returns 0 if the main should exit immediately, and 1 if it should continue.

29

Criterion Documentation, Release 2.1.0

9.1.2 Starting the test runner

The test runner can be called with criterion_run_all_tests. The function returns 0 if one test
or more failed, 1 otherwise.

9.1.3 Example main

#include <criterion/criterion.h>

int main(int argc, char *argv[]) {
struct criterion_test_set *tests = criterion_initialize();

if (!criterion_handle_args(argc, argv, true))
return 0;

int result = !criterion_run_all_tests(set);

criterion_finalize(set);
return result;

}

9.2 Implementing your own output provider

In case you are not satisfied by the default output provider, you can implement yours. To do so, simply
set the output_provider option to your custom output provider.

Each function contained in the structure is called during one of the standard phase of the criterion runner.

For more insight on how to implement this, see other existing output providers in src/log/.

30 Chapter 9. Changing the internals

CHAPTER 10

F.A.Q

Q. When running the test suite in Windows’ cmd.exe, the test executable prints weird characters,
how do I fix that?

A. Windows’ cmd.exe is not an unicode ANSI-compatible terminal emulator. There are plenty of ways
to fix that behaviour:

• Pass --ascii to the test suite when executing.

• Define the CRITERION_USE_ASCII environment variable to 1.

• Get a better terminal emulator, such as the one shipped with Git or Cygwin.

Q. I’m having an issue with the library, what can I do ?

A. Open a new issue on the github issue tracker, and describe the problem you are experiencing, along
with the platform you are running criterion on.

31

https://github.com/Snaipe/Criterion/issues

	Introduction
	Philosophy
	Features

	Setup
	Prerequisites
	Building from source
	Installing the library and language files (Linux, OS X, FreeBSD)
	Usage

	Getting started
	Adding tests
	Asserting things
	Configuring tests
	Setting up suite-wise configuration

	Assertion reference
	Common Assertions
	String Assertions
	Array Assertions
	Exception Assertions
	File Assertions

	Report Hooks
	Testing Phases
	Hook Parameters

	Environment and CLI
	Command line arguments
	Shell Wildcard Pattern
	Environment Variables

	Using parameterized tests
	Adding parameterized tests
	Passing multiple parameters
	Configuring parameterized tests

	Using theories
	Adding theories
	Assertions and invariants
	Configuring theories
	Full sample & purpose of theories
	What's the difference between theories and parameterized tests ?

	Changing the internals
	Providing your own main
	Implementing your own output provider

	F.A.Q

